Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators
نویسندگان
چکیده
منابع مشابه
Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators
We consider quite general h-pseudodifferential operators on R with small random perturbations and show that in the limit h → 0 the eigenvalues are distributed according to a Weyl law with a probabality that tends to 1. The first author has previously obtained a similar result in dimension 1. Our class of perturbations is different. Résumé Nous considérons des opérateurs h-pseudodifférentiels as...
متن کاملDiophantine tori and spectral asymptotics for non-selfadjoint operators
We study spectral asymptotics for small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part possesses several invariant Lagrangian tori enjoying a Diophantine property. We get complete asymptotic expansions for all eigenvalues in certain rectangles in the complex plane in two different cases: in the...
متن کاملNonclassical Eigenvalue Asymptotics for Operators of Schrödinger
which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...
متن کاملSpectral instability for non-selfadjoint operators∗
We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.
متن کاملNon-selfadjoint Perturbations of Selfadjoint Operators in 2 Dimensions I
This is the first in a series of works devoted to small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2. In the present work we treat the case when the classical flow of the unperturbed part is periodic and the strength ǫ of the perturbation is ≫ h (or sometimes only ≫ h2) and bounded from above by hδ for some δ > 0. We get a complete asymptotic descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2008
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-008-0230-7